

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Basic Electronics Engineering (20EC0445) Year & Sem: I-B.Tech & I-Sem **Course & Branch**: B.Tech – CSE, CSIT, CSM & CIC **Regulation:** R20

UNIT –I Basics of Semiconductor

1	a	Distinguish among conductors, semiconductors and insulators.	[L4][CO1] [8M]	
	b	What is meant by Doping in a semiconductor? And list the different types of acceptor and donor impurities.	[L1][CO1] [4M]	
2	a	Explain the differences between intrinsic and extrinsic semiconductors.	[L2][CO1] [8M]	
	b	Define the terms Drift and Diffusion current.	[L1][C01] [4M]	
3	a	With the help of Energy band diagram define the following terms:	[L1][C01] [8M]	
		i) valence band, ii) conduction band, and iii) band gap		
	b	Compare and contrast the semiconductors Silicon and Germanium.	[L4][CO1] [4M]	
4	W	ith the help of Energy band diagrams explain Conductors, Semiconductors	[L2][CO1] [12M]	
	&	ż Insulators.		
5	a	Explain the differences between P-type and N-type semiconductors.	[L2][CO1] [6M]	
	b	State and explain the term Conductivity in conductors and in	[L2][CO1] [6M]	
		semiconductors.		
6		escribe the operation of Intrinsic semiconductor at T=0 Kevin and T=300	[L2][CO1] [12M]	
	Ke	elvin.		
7	a	What is meant by Accepter energy level?	[L2][CO1] [3M]	
	b	State and Explain the law of electrical neutrality in semiconductor.	[L2][CO1] [9M]	
8	De	escribe the operation of P-type semiconductor at T=0 Kevin and T=300	[L2][CO1] [12M]	
	Ke	elvin.		
9	a	What is meant by Donor energy level?	[L2][CO1] [3M]	
	b	Explain in detail about mass action law.	[L2][CO1] [9M]	
10	De	escribe the operation of N-type semiconductor at T=0 Kevin and T=300	[L2][CO1] [12M]	
	Ke	elvin.		

UNIT –II <u>PN_JUNCTION DIODE</u>

1	a	Explain how a barrier potential is developed at the PN junction.	[L2][CO1] [10M]	
	b	Mention the applications of PN diode.	[L1][CO1] [2M]	
2	W	7ith the help of V-I Characteristics explain the action of PN junction diode	[L2][CO1] [12M]	
	under forward and reverse bias condition.			
3	a	Distinguish between Avalanche and Zener breakdown.	[L2][CO1] [6M]	
	b	Plot the graph for different breakdown mechanisms in semiconductors.	[L2][CO1] [6M]	
4	E	xplain the terms i) Transition capacitance C_T of a PN diode.	[L3][CO1] [12M]	
	ii) Diffusion capacitance C _D of a PN diode			
5	a	Explain Quantitative Theory of PN Diode Currents.	[L2][CO1] [8M]	
	b	A p-n junction germanium diode has a reverse saturation current of 0.10 µA at	[L3][CO1] [4M]	
		the room temperature of 27^{0} C. It is observed to be 30μ A, when the room		
		temperature is increased. Calculate the new room temperature. Also determine		
		the current passing through the diode at this new temperature.		
6	a	Draw the V-I characteristics of Zener diode and explain its operation.	[L4][CO1] [10M]	
	b	Mention the applications of Zener diode.	[L3][CO1] [2M]	
7	E	xplain the terms w.r.t PN diode.	[L2][CO1] [12M]	
	i)	Static Resistance		
	ii)	Dynamic Resistance and		
	iii) Reverse Resistance.		
8	a	Explain the effect of temperature on the Diode characteristics.	[L2][CO1] [8M]	
	b	When a reverse bias is applied to a germanium PN junction diode, the reverse	[L3][CO1] [4M]	
		saturation current at room temperature is 0.3µA. Determine the current		
		flowing in the diode when 0.15V forward bias is applied at room temperature.		
9	a	Compare and contrast PN diode with Zener diode.	[L2][CO1] [6M]	
	b	The reverse saturation current of a silicon PN junction diode is 10µA. Solve	[L2][CO4] [6M]	
		the diode current for the forward bias voltage of $0.6V$ at $25^{\circ}c$.		
10	E	xplain how the zener diode can be used as a voltage regulator.	[L3][CO1] [12M]	
	_			

UNIT –III <u>RECTIFIERS</u>

1	•	What is reactifier? Classify the different types of Pastifiers	
	a b	What is rectifier? Classify the different types of Rectifiers. Define and formulate the following terms i) Ripple Factor ii)	[L2][CO1][3M] [L1][CO1][9M]
	D		
		efficiency and	
2		iii) PIV	
2	a	Draw the circuit diagram of HWR and explain its operation with the	[L3][CO1][6M]
	h	help of waveforms.	
	U	Derive the expressions for Ripple factor, PIV and efficiency for HWR.	[L2][CO1][6M]
3	•	Draw the circuit diagram of FWR and explain its operation with the	
3	a	help of waveforms.	[L2][CO1][6M]
	h	Derive the expressions for Ripple factor, PIV and efficiency for	[L2][CO1][6M]
	U	FWR.	
4	Δ	HWR uses a diode with 50Ω internal resistance, if RMS input is	[L3][CO2][12M]
-		$0V$ and $R_L=1000\Omega$ then calculate:	
		Peak output current	
		DC output current	
) RMS output current	
) Efficiency.	
5		What is Filter? Classify different types of Filters.	[L2][CO1][3M]
		Demonstrate the working principle of LC filter with neat diagram	[L2][CO1][9M]
		and derive the expression for its ripple factor.	
6	a	Compare the performance of various types of filters.	[L2][CO1][6M]
		Draw the circuit diagram for CLC or π filter and state its ripple	[L1][C01][6M]
		factor.	
7	a	Obtain the ripple factor of a FWR with shunt capacitor filter.	[L4][CO1][6M]
	b	Derive an expression for the ripple factor in a FWR using inductor	[L4][CO1][6M]
		filter.	
8	a	Describe the operation of shunt capacitor filter with the help of	[L2][CO1][6M]
		circuit diagram and waveforms.	
	b	Find the value of inductance to be used in the inductor filter	[L1][CO2][6M]
		connected to a full wave rectifier operating at 60 Hz to provide a dc	
		output with 4% ripple for a 100Ω load.	
9	a	Describe the operation of inductor filter with the help of circuit	[L2][CO1][6M]
		diagram and waveforms.	
	b	1 1 1	[L4][CO2][6M]
		connected to a full wave rectifier operating at a standard aircraft	
		power frequency of 400 Hz, if the ripple factor is 10% for a load of	
10	6	500Ω.	
10	a	, ,	[L4][CO2][6M]
		alternating voltage of 325V peak value and the diode has a forward	
		resistance of 100 Ω .Calculate (i)peak, average and rms value of current (ii) d a power output (iii) as input power and (iv) afficiency	
		current (ii) d.c. power output (iii) ac input power ,and (iv) efficiency of the rectifier.	
	b		[I 5][CO1][6M]
	IJ	Compare run wave recurrer with nan-wave recurrer.	[L5][CO1][6M]

1		What is a DIT and its symbols? Evaluin the construction of NDN and DND	
1	a	What is a BJT and its symbols? Explain the construction of NPN and PNP	[L1][CO1][6M]
		transistors.	
	b	Explain the operation of NPN transistor under active region.	[L2][CO1][6M]
2	a	Compare the performance of a transistor in different configurations.	[L2][CO2][6M]
	b	Derive the relationship between α and β .	[L4][CO2] 6M]
3	a	Briefly explain the different configurations in BJT.	[L2][CO1] 6M]
	b	With a neat diagram, explain how a transistor acts as an amplifier.	[L2][CO3] 6M]
4	a	Explain the Input and Output characteristics of a BJT in CB Configuration.	[L2][CO3] 8M]
	b	If a transistor has α of 0.97, find the value of β . If β =200, find the value of α .	[L1][CO2] 4M]
5	a	Explain the Input and Output characteristics of a BJT in CE Configuration.	[L2][CO1] 8M]
	b	For a transistor, the leakage current is 0.1µA in CB configuration, while it is	[L1][CO4] 4M]
		19 μ A in CE configuration. Find $\alpha \& \beta$ of the same transistor?	
6	a	Explain the Input and Output characteristics of a BJT in CC Configuration.	[L2][CO1] 8M]
	b	If the base current in a transistor is 20μ A when the emitter current is 6.4mA,	[L1][CO2] 4M]
		What are the values of α and β ? Also calculate the collector current.	
7	a	What is current amplification factor in CB, CE and CC configurations?	[L1][CO1] 6M]
	b	Derive the relation among α , β and γ .	[L6][CO1][6M]
8	a	Define Transistor Biasing. Explain the need for Biasing and their types.	[L1][CO2] 6M]
	b	Draw and explain the circuit for voltage divider bias for establishing a stable	[L4][CO2] 6M]
		operating point.	
9	a	Define Stability Factor S, Stability Factor S' and Stability Factor S"	[L2][CO1][6M]
	b	Derive the relation among I _C , I _B and I _{CBO} .	[L4][CO2][6M]
10	a	Explain the concept of DC and AC Load lines and discuss the criteria for	[L2][CO2] 6M]
		fixing the Q-point.	
	b	Draw a circuit which uses a diode to compensate for changes in I _{CO} . Explain	[L2][CO2][6M]
		how stabilization is achieved in the circuit.	
L	۱		1

1	a	What is a JFET and its types & symbols?	[L1][CO1] [4M]
	b	Explain the construction and working principle of N-channel JFET.	[L2][CO1] [8M]
2	a	Sketch and explain the n-channel JFET output characteristics under applied bias.	[L2][CO1] [8M]
	b	Classify the types of MOSFETS with their symbols.	[L2][CO1] [4M]
3	a	List the differences between n-channel JFET and p-channel JFET.	[L4][CO1][6M]
	b	Briefly explain the term pinch-off voltage using drain characteristics of JFET.	[L2][CO2] [6M]
4	a	Compare the performance of BJT with FET.	[L2][CO1] [8M]
	b	List the applications of MOSFETs.	[L4][CO1] [4M]
5	a	Sketch the transfer characteristics of n-channel JFET and explain.	[L2][CO1] [8M]
	b	Compare the performance of MOSFET with FET.	[L2][CO1][4M]
6	D	efine the following FET parameters:	[L1][CO1] [12M]
	i) Drain Resistance		
	ii) Trans-conductance	
	ii	i) Amplification factor	
7	W	/ith the help of neat diagram, explain the operation and characteristics of N-channel	[L2][CO2] [12M]
	D	epletion type MOSFET.	
8	W	/ith the help of neat diagram, explain the operation and characteristics of n-channel	[L2][CO2] [12M]
	E	nhancement type MOSFET.	
9	a	List differences between depletion and enhancement MOSFET.	[L4][CO1] [6M]
	b	Explain the voltage divider bias circuit of FET.	[L2][CO3] [6M]
10	a	List the types of biasing in FET.	[L4][CO3] [4M]
	b	Explain the different methods for fixing the Q-point in a FET.	[L2][CO4] [8M]